Browsing Interface
: Welcome guest :
log in
[
Home
| 
Graph
|  ]
KB:
SUMO
Language:
ChineseLanguage
ChinesePinyinWriting
ChineseSimplifiedWriting
ChineseTraditionalLanguage
EnglishLanguage
FrenchLanguage
GermanLanguage
HerbaceousPlant
Hindi
ItalianLanguage
JapaneseLanguage
PortugueseLanguage
SpanishLanguage
SwedishLanguage
WoodyPlant
cb
cz
de
hi
ro
sv
tg
Formal Language:
OWL
SUO-KIF
TPTP
traditionalLogic
KB Term:
Term intersection
English Word:
Any
Noun
Verb
Adjective
Adverb
reflexiveOn
Sigma KEE - reflexiveOn
reflexiveOn
appearance as argument number 1
(
documentation
reflexiveOn
ChineseLanguage
"一个
BinaryRelation
在一个
SetOrClass
是自反 的除非这个
SetOrClass
的每一个实例戴着和自身相关的关系。")
chinese_format.kif 2041-2042
(
documentation
reflexiveOn
EnglishLanguage
"A
BinaryRelation
is reflexive on a
Class
only if every instance of the
Class
bears the relation to itself.")
Merge.kif 3606-3608
(
documentation
reflexiveOn
JapaneseLanguage
"
BinaryRelation
は、
SetOrClass
のすべての インスタンスがそれ自体との関係を持つ場合にのみ、
SetOrClass
に対して再帰的である。")
japanese_format.kif 686-687
(
domain
reflexiveOn
1
BinaryRelation
)
Merge.kif 3603-3603
Le nombre 1 argument de
reflexiveOn
est une
instance
de
relation binaire
(
domain
reflexiveOn
2
Class
)
Merge.kif 3604-3604
Le nombre 2 argument de
reflexiveOn
est une
instance
de
classe
(
instance
reflexiveOn
AsymmetricRelation
)
Merge.kif 3602-3602
reflexiveOn
est une
instance
de
relation asym�trique
(
instance
reflexiveOn
BinaryPredicate
)
Merge.kif 3601-3601
reflexiveOn
est une
instance
de
pr�dicat binaire
appearance as argument number 2
(
format
ChineseLanguage
reflexiveOn
"%1 在 %2 %n 是自反关系")
chinese_format.kif 179-179
(
format
EnglishLanguage
reflexiveOn
"%1 is %n reflexive on %2")
english_format.kif 180-180
(
format
FrenchLanguage
reflexiveOn
"%1 %n est refl�xif sur %2")
french_format.kif 109-109
(
format
ItalianLanguage
reflexiveOn
"%1 è %n riflessivo su %2")
relations-it.txt 247-247
(
format
JapaneseLanguage
reflexiveOn
"%1 は %2 に対して reflexive では %n")
japanese_format.kif 1938-1938
(
format
PortugueseLanguage
reflexiveOn
"%1 %n e' reflivo em %2")
portuguese_format.kif 61-61
(
format
cz
reflexiveOn
"%1 %p{je} %n{nen�} reflexive on %2")
relations-cz.txt 107-107
(
format
de
reflexiveOn
"%1 ist auf %2 reflexiv %n{nicht}")
relations-de.txt 226-226
(
format
hi
reflexiveOn
"%1 %2 para
sv
atulya %n hai")
relations-hindi.txt 285-285
(
format
ro
reflexiveOn
"%1 %n{nu} este reflexive%t{reflexivã} pe %2")
relations-ro.kif 128-128
(
format
sv
reflexiveOn
"%1 är %n{inte} reflexiv över %2")
relations-sv.txt 114-114
(
termFormat
ChineseLanguage
reflexiveOn
"反思在")
domainEnglishFormat.kif 49148-49148
(
termFormat
ChineseLanguage
reflexiveOn
"含自反关系")
chinese_format.kif 180-180
(
termFormat
ChineseTraditionalLanguage
reflexiveOn
"反思在")
domainEnglishFormat.kif 49147-49147
(
termFormat
EnglishLanguage
reflexiveOn
"reflexive on")
domainEnglishFormat.kif 49146-49146
(
termFormat
de
reflexiveOn
"reflexivAuf")
terms-de.txt 71-71
antecedent
(=>
(
and
(
instance
?RELATION
ReflexiveRelation
)
(
reflexiveOn
?RELATION ?CLASS)
(
instance
?RELATION
Predicate
))
(
forall
(?INST)
(=>
(
instance
?INST ?CLASS)
(?RELATION ?INST ?INST))))
Merge.kif 3610-3618
Relation binaire
est une
instance
de
relation r�flexive
relation binaire
est
refl
�xif sur
classe
relation binaire
est une
instance
de
predicat
entit�
entit�
est une
instance
de
classe
relation binaire
entit�
and
entit�
consequent
(=>
(
equivalenceRelationOn
?RELATION ?CLASS)
(
and
(
instance
?RELATION
TransitiveRelation
)
(
instance
?RELATION
SymmetricRelation
)
(
reflexiveOn
?RELATION ?CLASS)))
Merge.kif 3713-3718
Relation binaire
a une
relation
d'�quivalence avec
classe
relation binaire
est une
instance
de
relation transitive
relation binaire
est une
instance
de
relation sym�trique
relation binaire
est
refl
�xif sur
classe
(=>
(
partialOrderingOn
?RELATION ?CLASS)
(
and
(
reflexiveOn
?RELATION ?CLASS)
(
instance
?RELATION
TransitiveRelation
)
(
instance
?RELATION
AntisymmetricRelation
)))
Merge.kif 3650-3655
Relation binaire
est
partiellement
ordonn� sur
classe
relation binaire
est
refl
�xif sur
classe
relation binaire
est une
instance
de
relation transitive
relation binaire
est une
instance
de
relation antisym�trique
Show simplified definition (without tree view)
Show simplified definition (with tree view)
Show without tree
Sigma web home
Suggested Upper Merged Ontology (SUMO) web home
Sigma version 3.0 is
open source software
produced by
Articulate Software
and its partners