Browsing Interface
: Welcome guest :
log in
[
Home
| 
Graph
|  ]
KB:
SUMO
Language:
ChineseLanguage
ChinesePinyinWriting
ChineseSimplifiedWriting
ChineseTraditionalLanguage
EnglishLanguage
FrenchLanguage
GermanLanguage
HerbaceousPlant
Hindi
ItalianLanguage
JapaneseLanguage
PortugueseLanguage
SpanishLanguage
SwedishLanguage
WoodyPlant
cb
cz
de
hi
ro
sv
tg
Formal Language:
OWL
SUO-KIF
TPTP
traditionalLogic
KB Term:
Term intersection
English Word:
Any
Noun
Verb
Adjective
Adverb
reflexiveOn
Sigma KEE - reflexiveOn
reflexiveOn
appearance as argument number 1
(
documentation
reflexiveOn
ChineseLanguage
"一个
BinaryRelation
在一个
SetOrClass
是自反 的除非这个
SetOrClass
的每一个实例戴着和自身相关的关系。")
chinese_format.kif 2041-2042
(
documentation
reflexiveOn
EnglishLanguage
"A
BinaryRelation
is reflexive on a
Class
only if every instance of the
Class
bears the relation to itself.")
Merge.kif 3607-3609
(
documentation
reflexiveOn
JapaneseLanguage
"
BinaryRelation
は、
SetOrClass
のすべての インスタンスがそれ自体との関係を持つ場合にのみ、
SetOrClass
に対して再帰的である。")
japanese_format.kif 686-687
(
domain
reflexiveOn
1
BinaryRelation
)
Merge.kif 3604-3604
The number 1 argument of
reflexive on
is an
instance
of
binary relation
(
domain
reflexiveOn
2
Class
)
Merge.kif 3605-3605
The number 2 argument of
reflexive on
is an
instance
of
class
(
instance
reflexiveOn
AsymmetricRelation
)
Merge.kif 3603-3603
reflexive on
is an
instance
of
asymmetric relation
(
instance
reflexiveOn
BinaryPredicate
)
Merge.kif 3602-3602
reflexive on
is an
instance
of
binary predicate
appearance as argument number 2
(
format
ChineseLanguage
reflexiveOn
"%1 在 %2 %n 是自反关系")
chinese_format.kif 179-179
(
format
EnglishLanguage
reflexiveOn
"%1 is %n reflexive on %2")
english_format.kif 180-180
(
format
FrenchLanguage
reflexiveOn
"%1 %n est refl�xif sur %2")
french_format.kif 109-109
(
format
ItalianLanguage
reflexiveOn
"%1 è %n riflessivo su %2")
relations-it.txt 247-247
(
format
JapaneseLanguage
reflexiveOn
"%1 は %2 に対して reflexive では %n")
japanese_format.kif 1938-1938
(
format
PortugueseLanguage
reflexiveOn
"%1 %n e' reflivo em %2")
portuguese_format.kif 61-61
(
format
cz
reflexiveOn
"%1 %p{je} %n{nen�} reflexive on %2")
relations-cz.txt 107-107
(
format
de
reflexiveOn
"%1 ist auf %2 reflexiv %n{nicht}")
relations-de.txt 226-226
(
format
hi
reflexiveOn
"%1 %2 para
sv
atulya %n hai")
relations-hindi.txt 285-285
(
format
ro
reflexiveOn
"%1 %n{nu} este reflexive%t{reflexivã} pe %2")
relations-ro.kif 128-128
(
format
sv
reflexiveOn
"%1 är %n{inte} reflexiv över %2")
relations-sv.txt 114-114
(
termFormat
ChineseLanguage
reflexiveOn
"反思在")
domainEnglishFormat.kif 49138-49138
(
termFormat
ChineseLanguage
reflexiveOn
"含自反关系")
chinese_format.kif 180-180
(
termFormat
ChineseTraditionalLanguage
reflexiveOn
"反思在")
domainEnglishFormat.kif 49137-49137
(
termFormat
EnglishLanguage
reflexiveOn
"reflexive on")
domainEnglishFormat.kif 49136-49136
(
termFormat
de
reflexiveOn
"reflexivAuf")
terms-de.txt 71-71
antecedent
(=>
(
and
(
instance
?RELATION
ReflexiveRelation
)
(
reflexiveOn
?RELATION ?CLASS)
(
instance
?RELATION
Predicate
))
(
forall
(?INST)
(=>
(
instance
?INST ?CLASS)
(?RELATION ?INST ?INST))))
Merge.kif 3611-3619
If
a binary relation
is an
instance
of
reflexive relation
and
the binary relation
is
reflexive
on
a class
and
the binary relation
is an
instance
of
predicate
,
then for all
an entity
if
the entity
is an
instance
of
the class
,
then
the binary relation
the entity
and
the entity
consequent
(=>
(
equivalenceRelationOn
?RELATION ?CLASS)
(
and
(
instance
?RELATION
TransitiveRelation
)
(
instance
?RELATION
SymmetricRelation
)
(
reflexiveOn
?RELATION ?CLASS)))
Merge.kif 3714-3719
If
a binary relation
is an
equivalence
relation on
a class
,
then
the binary relation
is an
instance
of
transitive relation
and
the binary relation
is an
instance
of
symmetric relation
and
the binary relation
is
reflexive
on
the class
(=>
(
partialOrderingOn
?RELATION ?CLASS)
(
and
(
reflexiveOn
?RELATION ?CLASS)
(
instance
?RELATION
TransitiveRelation
)
(
instance
?RELATION
AntisymmetricRelation
)))
Merge.kif 3651-3656
If
a binary relation
is
partial
ordering on
a class
,
then
the binary relation
is
reflexive
on
the class
and
the binary relation
is an
instance
of
transitive relation
and
the binary relation
is an
instance
of
antisymmetric relation
Show simplified definition (without tree view)
Show simplified definition (with tree view)
Show without tree
Sigma web home
Suggested Upper Merged Ontology (SUMO) web home
Sigma version 3.0 is
open source software
produced by
Articulate Software
and its partners