Simple Browser : Welcome guest : log in
Home |  Graph |  ]  KB:  Language:   

Formal Language: 



KB Term: 

  relatedInternalConcept

Sigma KEE - relatedInternalConcept
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
relatedInternalConcept
Means that the two arguments are related concepts within the SUMO, i.e. there is a significant similarity of meaning between them. To indicate a meaning relation between a SUMO concept and a concept from another source, use the Predicate relatedExternalConcept.
Relationships      
InstancesabstraitProperties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment.
 pr�dicat binaireA Predicate relating two items - its valence is two.
 relation binaireBinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems.
 entit�The universal class of individuals. This is the root node of the ontology.
 relation �quivalenteA BinaryRelation is an equivalence relation if it is a ReflexiveRelation, a SymmetricRelation, and a TransitiveRelation.
 InheritableRelationThe class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate.
 predicatA Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'.
 relation r�flexiveRelation ?REL is reflexive iff (?REL ?INST ?INST) for all ?INST.
 relationThe Class of relations. There are two kinds of Relation: Predicate and Function. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators.
 relation sym�triqueA BinaryRelation ?REL is symmetric just iff (?REL ?INST1 ?INST2) imples (?REL ?INST2 ?INST1), for all ?INST1 and ?INST2.
 relation transitiveA BinaryRelation ?REL is transitive if (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST3) imply (?REL ?INST1 ?INST3), for all ?INST1, ?INST2, and ?INST3.
Belongs to Class entit�


Show full definition (without tree view)
Show full definition (with tree view)

Show without tree


Sigma web home      Suggested Upper Merged Ontology (SUMO) web home
Sigma version 3.0 is open source software produced by Articulate Software and its partners