Relationships
|
|
|
|
Parents |
地理分區域 |
(geographicSubregion ?PART ?WHOLE) means that the GeographicArea ?PART is part of the GeographicArea ?WHOLE.
|
Children |
行政中心 | (administrativeCenter ?CENTER ?REGION) means that ?CENTER is the City (or other area) from which the larger GeopoliticalArea ?REGION is administered. |
| 主要地緣政治細分 | (primaryGeopoliticalSubdivision ?AREA ?COUNTRY) means that the GeopoliticalArea ?AREA is one of the first-order administrative divisions of the Nation ?COUNTRY. For example, in the United States, any of the fifty states. This does not include subordinate regions that have a lesser status, such as British Crown colonies, U.S. territories, or protectorates. See geopoliticalSubdivision. |
Instances | Abstract | Properties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment. |
| AntisymmetricRelation | BinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation. |
| AsymmetricRelation | A BinaryRelation is asymmetric if and only if it is both an AntisymmetricRelation and an IrreflexiveRelation. |
| BinaryPredicate | A Predicate relating two items - its valence is two. |
| BinaryRelation | BinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems. |
| Entity | The universal class of individuals. This is the root node of the ontology. |
| 可繼承的關係 | The class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate. |
| IrreflexiveRelation | Relation ?REL is irreflexive iff (?REL ?INST ?INST) holds for no value of ?INST. |
| PartialOrderingRelation | A BinaryRelation is a partial ordering if it is a ReflexiveRelation, an AntisymmetricRelation, and a TransitiveRelation. |
| Predicate | A Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'. |
| ReflexiveRelation | Relation ?REL is reflexive iff (?REL ?INST ?INST) for all ?INST. |
| Relation | The Class of relations. There are two kinds of Relation: Predicate and Function. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators. |
| SpatialRelation | The Class of Relations that are spatial in a wide sense. This Class includes mereological relations and topological relations. |
| TotalValuedRelation | A Relation is a TotalValuedRelation just in case there exists an assignment for the last argument position of the Relation given any assignment of values to every argument position except the last one. Note that declaring a Relation to be both a TotalValuedRelation and a SingleValuedRelation means that it is a total function. |
| TransitiveRelation | A BinaryRelation ?REL is transitive if (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST3) imply (?REL ?INST1 ?INST3), for all ?INST1, ?INST2, and ?INST3. |
Belongs to Class
|
Entity |
| | |