Relationships




Parents 
partiallyFills 
(partiallyFills ?OBJ ?HOLE) means that ?OBJ completelyFills some part of ?HOLE. Note that if (partiallyFills ?OBJ1 ?HOLE) and (part ?OBJ1 ?OBJ2), then (partiallyFills ?OBJ2 ?HOLE). Note too that a partial filler need not be wholly inside a hole (it may stick out), which means that every complete filler also qualifies as (is a limit case of) a partial one.

Children 
fills  Holes can be filled. (fills ?OBJ ?HOLE) means that the Object ?OBJ fills the Hole ?HOLE. Note that fills here means perfectly filled. Perfect fillers and fillable entities have no parts in common (rather, they may occupy the same spatial region). 
Instances  Abstract  Properties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment. 
 AntisymmetricRelation  BinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation. 
 AsymmetricRelation  A BinaryRelation is asymmetric if and only if it is both an AntisymmetricRelation and an IrreflexiveRelation. 
 BinaryPredicate  A Predicate relating two items  its valence is two. 
 BinaryRelation  BinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems. 
 Entity  The universal class of individuals. This is the root node of the ontology. 
 InheritableRelation  The class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate. 
 IrreflexiveRelation  Relation ?REL is irreflexive iff (?REL ?INST ?INST) holds for no value of ?INST. 
 Predicate  A Predicate is a sentenceforming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'. 
 Relation  The Class of relations. There are two kinds of Relation: Predicate and Function. Predicates and Functions both denote sets of ordered ntuples. The difference between these two Classes is that Predicates cover formulaforming operators, while Functions cover termforming operators. 
 SpatialRelation  The Class of Relations that are spatial in a wide sense. This Class includes mereological relations and topological relations. 
 TotalValuedRelation  A Relation is a TotalValuedRelation just in case there exists an assignment for the last argument position of the Relation given any assignment of values to every argument position except the last one. Note that declaring a Relation to be both a TotalValuedRelation and a SingleValuedRelation means that it is a total function. 
 TransitiveRelation  A BinaryRelation ?REL is transitive if (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST3) imply (?REL ?INST1 ?INST3), for all ?INST1, ?INST2, and ?INST3. 
Belongs to Class

Entity 
  