Relationships




Children 
subField  (subField ?FIELD1 ?FIELD2) means that ?FIELD1 is a proper part of the ?FIELD2. For example, Physiology is a subField of Biology. 
 sousensemble  (subset ?SET1 ?SET2) is true just in case the elements of the Set ?SET1 are also elements of the Set ?SET2. 
Instances  abstrait  Properties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment. 
 relation antisym�trique  BinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation. 
 pr�dicat binaire  A Predicate relating two items  its valence is two. 
 relation binaire  BinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems. 
 ClosedWorldPredicate  
 entit�  The universal class of individuals. This is the root node of the ontology. 
 InheritableRelation  The class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate. 
 relation partiellement dirig�e  A BinaryRelation is a partial ordering if it is a ReflexiveRelation, an AntisymmetricRelation, and a TransitiveRelation. 
 predicat  A Predicate is a sentenceforming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'. 
 relation r�flexive  Relation ?REL is reflexive iff (?REL ?INST ?INST) for all ?INST. 
 relation  The Class of relations. There are two kinds of Relation: Predicate and Function. Predicates and Functions both denote sets of ordered ntuples. The difference between these two Classes is that Predicates cover formulaforming operators, while Functions cover termforming operators. 
 relation total  A Relation is a TotalValuedRelation just in case there exists an assignment for the last argument position of the Relation given any assignment of values to every argument position except the last one. Note that declaring a Relation to be both a TotalValuedRelation and a SingleValuedRelation means that it is a total function. 
 relation transitive  A BinaryRelation ?REL is transitive if (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST3) imply (?REL ?INST1 ?INST3), for all ?INST1, ?INST2, and ?INST3. 
Belongs to Class

entit� 
  