Relationships
|
|
|
|
Parents |
humanName |
(humanName ?STRING ?OBJ) means that ?STRING is a full or partial name for the Human ?OBJ.
|
|
names |
(names ?STRING ?ENTITY) means that the thing ?ENTITY has the SymbolicString ?STRING as its name. Note that names and represents are the two immediate subrelations of refers. The predicate names is used when the referring item is merely a tag without connotative content, while the predicate represents is used for referring items that have such content.
|
Instances | abstrait | Properties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment. |
| relation antisym�trique | BinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation. |
| relation asym�trique | A BinaryRelation is asymmetric if and only if it is both an AntisymmetricRelation and an IrreflexiveRelation. |
| pr�dicat binaire | A Predicate relating two items - its valence is two. |
| relation binaire | BinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems. |
| entit� | The universal class of individuals. This is the root node of the ontology. |
| InheritableRelation | The class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate. |
| relation irr�flexive | Relation ?REL is irreflexive iff (?REL ?INST ?INST) holds for no value of ?INST. |
| relation partielle | A Relation is a PartialValuedRelation just in case it is not a TotalValuedRelation, i.e. just in case assigning values to every argument position except the last one does not necessarily mean that there is a value assignment for the last argument position. Note that, if a Relation is both a PartialValuedRelation and a SingleValuedRelation, then it is a partial function. |
| predicat | A Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'. |
| relation | The Class of relations. There are two kinds of Relation: Predicate and Function. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators. |
Belongs to Class
|
entit� |
| | |