A RelationExtendedToQuantities is a Relation that, when it is true on a sequence of arguments that are RealNumbers, it is also true on a sequence of instances of ConstantQuantity with those magnitudes in some unit of measure. For example, the lessThan relation is extended to quantities. This means that for all pairs of quantities ?QUANTITY1 and ?QUANTITY2, (lessThan ?QUANTITY1 ?QUANTITY2) if and only if, for some ?NUMBER1, ?NUMBER2, and ?UNIT, ?QUANTITY1 = (MeasureFn ?NUMBER1 ?UNIT), ?QUANTITY2 = (MeasureFn ?NUMBER2 ?UNIT), and (lessThan ?NUMBER1 ?NUMBER2), for all units ?UNIT on which ?QUANTITY1 and ?QUANTITY2 can be measured. Note that, when a RelationExtendedToQuantities is extended from RealNumbers to instances of ConstantQuantity, the ConstantQuantity must be measured along the same physical dimension.
|