Relationships
|
|
|
|
Instances | abstrait | Properties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment. |
| pr�dicat binaire | A Predicate relating two items - its valence is two. |
| relation binaire | BinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems. |
| entit� | The universal class of individuals. This is the root node of the ontology. |
| InheritableRelation | The class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate. |
| predicat | A Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'. |
| relation r�flexive | Relation ?REL is reflexive iff (?REL ?INST ?INST) for all ?INST. |
| relation | The Class of relations. There are two kinds of Relation: Predicate and Function. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators. |
| relation sym�trique | A BinaryRelation ?REL is symmetric just iff (?REL ?INST1 ?INST2) imples (?REL ?INST2 ?INST1), for all ?INST1 and ?INST2. |
| relation temporel | The Class of temporal Relations. This Class includes notions of (temporal) topology of intervals, (temporal) schemata, and (temporal) extension. |
Belongs to Class
|
entit� |
| | |