SetOrClass(set or class) | subgroup, subpopulation |
appearance as argument number 1 |
(documentation SetOrClass ChineseLanguage "这是 Set 和 Class 的 SetOrClass,也就是说 任何 Abstract 有 element 或 instance的实例。") | chinese_format.kif 1804-1805 | |
(documentation SetOrClass EnglishLanguage "The SetOrClass of Sets and Classes, i.e. any instance of Abstract that has elements or instances.") | Merge.kif 2131-2133 | |
(documentation SetOrClass JapaneseLanguage "Sets の SetOrClass と Classes。 例: elements または instances がある Abstract の任意のインスタンス。") | japanese_format.kif 419-420 | |
(partition SetOrClass Set Class) | Merge.kif 2129-2129 | Set or class is exhaustively partitioned into set and class |
(subclass SetOrClass Abstract) | Merge.kif 2128-2128 | Set or class is a subclass of abstract |
appearance as argument number 2 |
appearance as argument number 3 |
antecedent |
(=> (and (instance ?SET SetOrClass) (equal (CardinalityFn ?SET) ?COUNT)) (cardinality ?SET ?COUNT)) |
Government.kif 410-414 |
|
consequent |
(=> (and (exactCardinality ?REL ?ARG ?COUNT) (instance ?REL Predicate)) (exists (?S ?EL @ARGS) (and (instance ?S SetOrClass) (=> (and (?REL @ARGS) (equal ?EL (ListOrderFn (ListFn @ARGS) ?ARG))) (and (instance ?EL ?S) (equal (CardinalityFn ?S) ?COUNT)))))) |
Media.kif 2137-2150 |
|
(=> (and (maxCardinality ?REL ?ARG ?COUNT) (instance ?REL Predicate)) (exists (?S ?EL @ARGS) (and (instance ?S SetOrClass) (=> (and (?REL @ARGS) (equal ?EL (ListOrderFn (ListFn @ARGS) ?ARG))) (and (instance ?EL ?S) (lessThanOrEqualTo (CardinalityFn ?S) ?COUNT)))))) |
Media.kif 2210-2223 |
|
(=> (and (minCardinality ?REL ?ARG ?COUNT) (instance ?REL Predicate)) (exists (?S ?EL @ARGS) (and (instance ?S SetOrClass) (=> (and (?REL @ARGS) (equal ?EL (ListOrderFn (ListFn @ARGS) ?ARG))) (and (instance ?EL ?S) (greaterThanOrEqualTo (CardinalityFn ?S) ?COUNT)))))) |
Media.kif 2174-2187 |
|
statement |
(domain CardinalityFn 1 (UnionFn SetOrClass Collection)) |
Merge.kif 5509-5509 | The number 1 argument of cardinality is an instance of the union of set or class and collection |