Browsing Interface : Welcome guest : log in
Home |  Graph |  ]  KB:  Language:   

Formal Language: 



KB Term:  Term intersection
English Word: 

Sigma KEE - AntisymmetricRelation
AntisymmetricRelation(antisymmetric relation)

appearance as argument number 1
-------------------------


(documentation AntisymmetricRelation ChineseLanguage "一个 BinaryRelation ?REL 是 AntisymmetricRelation 如果不同的 ?INST1 和 ?INST2 是(?REL ?INST1 ?INST2) 不意味着 (?REL ?INST2 ?INST1)。也就是说当所有的 ?INST1 和 ?INST2 是 (?REL ?INST1 ?INST2)和 (?REL ?INST2 ?INST1) 意味着 ?INST1 和 ?INST2 是相同的。注:一个AntisymmetricRelation 有可能 是一个 ReflexiveRelation。") chinese_format.kif 1841-1845
(documentation AntisymmetricRelation EnglishLanguage "BinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation.") Merge.kif 2290-2295
(documentation AntisymmetricRelation JapaneseLanguage "BinaryRelation ?REL は、明確な ?INST1 および ?INST2 の場合は AR であり、(?REL ?INST1 ?INST2) は (?REL ?INST2 ?INST1) を意味 しない。つまり、すべての ?INST1 および ?INST2 に対して (?REL ?INST1 ?INST2) および (?REL ?INST2 ?INST1) は、?INST1 と ?INST2 が同一であることを意味する。 注: AntisymmetricRelationReflexiveRelation になる可能性がある。") japanese_format.kif 461-465
(subclass AntisymmetricRelation BinaryRelation) Merge.kif 2288-2288 Antisymmetric relation is a subclass of binary relation

appearance as argument number 2
-------------------------


(disjoint SymmetricRelation AntisymmetricRelation) Merge.kif 2257-2257 Symmetric relation is disjoint from antisymmetric relation
(instance keyName AntisymmetricRelation) Media.kif 3260-3260 key name is an instance of antisymmetric relation
(instance legalGuardian AntisymmetricRelation) Mid-level-ontology.kif 25037-25037 legal guardian is an instance of antisymmetric relation
(instance located AntisymmetricRelation) Merge.kif 4074-4074 located is an instance of antisymmetric relation
(instance stored AntisymmetricRelation) Mid-level-ontology.kif 15737-15737 stored is an instance of antisymmetric relation
(instance subString AntisymmetricRelation) Mid-level-ontology.kif 26066-26066 sub string is an instance of antisymmetric relation
(subclass AsymmetricRelation AntisymmetricRelation) Merge.kif 2271-2271 Asymmetric relation is a subclass of antisymmetric relation
(subclass PartialOrderingRelation AntisymmetricRelation) Merge.kif 2362-2362 Partial ordering relation is a subclass of antisymmetric relation
(termFormat ChineseLanguage AntisymmetricRelation "反对称关系") chinese_format.kif 897-897 Partial ordering relation is a subclass of antisymmetric relation
(termFormat EnglishLanguage AntisymmetricRelation "antisymmetric relation") english_format.kif 996-996 Partial ordering relation is a subclass of antisymmetric relation
(termFormat FrenchLanguage AntisymmetricRelation "relation antisym�trique") french_format.kif 573-573 Partial ordering relation is a subclass of antisymmetric relation
(termFormat Hindi AntisymmetricRelation "saamanjasya-virodhi sambandha") terms-hindi.txt 103-103 Partial ordering relation is a subclass of antisymmetric relation
(termFormat ItalianLanguage AntisymmetricRelation "RelazioneAntisimmetrica") terms-it.txt 106-106 Partial ordering relation is a subclass of antisymmetric relation
(termFormat JapaneseLanguage AntisymmetricRelation "反対称関係") japanese_format.kif 2258-2258 Partial ordering relation is a subclass of antisymmetric relation
(termFormat PortugueseLanguage AntisymmetricRelation "Relacao Anti-simetrica") portuguese_format.kif 525-525 Partial ordering relation is a subclass of antisymmetric relation
(termFormat cz AntisymmetricRelation "antisymmetric relation") terms-cz.txt 140-140 Partial ordering relation is a subclass of antisymmetric relation
(termFormat de AntisymmetricRelation "antisymmetrische Relation") terms-de.txt 399-399 Partial ordering relation is a subclass of antisymmetric relation
(termFormat ro AntisymmetricRelation "relaþie antisimetricã") relations-ro.kif 594-594 Partial ordering relation is a subclass of antisymmetric relation
(termFormat tg AntisymmetricRelation "") terms-tg.txt 107-107 Partial ordering relation is a subclass of antisymmetric relation

antecedent
-------------------------


(=>
    (and
        (instance ?REL AntisymmetricRelation)
        (instance ?REL IrreflexiveRelation))
    (instance ?REL AsymmetricRelation))
Merge.kif 2282-2286
(=>
    (instance ?REL AntisymmetricRelation)
    (forall (?INST1 ?INST2)
        (=>
            (and
                (?REL ?INST1 ?INST2)
                (?REL ?INST2 ?INST1))
            (equal ?INST1 ?INST2))))
Merge.kif 2297-2304

consequent
-------------------------


(=>
    (instance ?REL AsymmetricRelation)
    (and
        (instance ?REL AntisymmetricRelation)
        (instance ?REL IrreflexiveRelation)))
Merge.kif 2276-2280
(=>
    (partialOrderingOn ?RELATION ?CLASS)
    (and
        (reflexiveOn ?RELATION ?CLASS)
        (instance ?RELATION TransitiveRelation)
        (instance ?RELATION AntisymmetricRelation)))
Merge.kif 3650-3655


Show full definition with tree view
Show simplified definition (without tree view)
Show simplified definition (with tree view)



Sigma web home      Suggested Upper Merged Ontology (SUMO) web home
Sigma version 3.0 is open source software produced by Articulate Software and its partners