Simple Browser : Welcome guest : log in
Home |  Graph |  ]  KB:  Language:   

Formal Language: 



KB Term: 

  greaterThan

Sigma KEE - greaterThan
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
greater than
(greaterThan ?NUMBER1 ?NUMBER2) is true just in case the Quantity ?NUMBER1 is greater than the Quantity ?NUMBER2.
Relationships      
InstancesabstractProperties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment.
 binary predicateA Predicate relating two items - its valence is two.
 binary relationBinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems.
 entityThe universal class of individuals. This is the root node of the ontology.
 inheritable relationThe class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate.
 irreflexive relationRelation ?REL is irreflexive iff (?REL ?INST ?INST) holds for no value of ?INST.
 predicateA Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'.
 relationThe Class of relations. There are three kinds of Relation: Predicate, Function, and List. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators. A List, on the other hand, is a particular ordered n-tuple.
 relation extended to quantitiesA RelationExtendedToQuantities is a Relation that, when it is true on a sequence of arguments that are RealNumbers, it is also true on a sequence of instances of ConstantQuantity with those magnitudes in some unit of measure. For example, the lessThan relation is extended to quantities. This means that for all pairs of quantities ?QUANTITY1 and ?QUANTITY2, (lessThan ?QUANTITY1 ?QUANTITY2) if and only if, for some ?NUMBER1, ?NUMBER2, and ?UNIT, ?QUANTITY1 = (MeasureFn ?NUMBER1 ?UNIT), ?QUANTITY2 = (MeasureFn ?NUMBER2 ?UNIT), and (lessThan ?NUMBER1 ?NUMBER2), for all units ?UNIT on which ?QUANTITY1 and ?QUANTITY2 can be measured. Note that, when a RelationExtendedToQuantities is extended from RealNumbers to instances of ConstantQuantity, the ConstantQuantity must be measured along the same physical dimension.
 total valued relationA Relation is a TotalValuedRelation just in case there exists an assignment for the last argument position of the Relation given any assignment of values to every argument position except the last one. Note that declaring a Relation to be both a TotalValuedRelation and a SingleValuedRelation means that it is a total function.
 transitive relationA BinaryRelation ?REL is transitive if (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST3) imply (?REL ?INST1 ?INST3), for all ?INST1, ?INST2, and ?INST3.
Belongs to Class entity


Show full definition (without tree view)
Show full definition (with tree view)

Show without tree


Sigma web home      Suggested Upper Merged Ontology (SUMO) web home
Sigma version 2.99c (>= 2017/11/20) is open source software produced by Articulate Software and its partners