Simple Browser : Welcome guest : log in
Home |  Graph |  ]  KB:  Language:   

Formal Language: 



KB Term: 

  element

Sigma KEE - element
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
element
(element ?ENTITY ?SET) is true just in case ?ENTITY is contained in the Set ?SET. An Entity can be an element of another Entity only if the latter is a Set.
Relationships      
Parents instance An object is an instance of a SetOrClass if it is included in that SetOrClass. An individual may be an instance of many classes, some of which may be subclasses of others. Thus, there is no assumption in the meaning of instance about specificity or uniqueness.
InstancesabstractProperties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment.
 antisymmetric relationBinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation.
 asymmetric relationA BinaryRelation is asymmetric if and only if it is both an AntisymmetricRelation and an IrreflexiveRelation.
 binary predicateA Predicate relating two items - its valence is two.
 binary relationBinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems.
 entityThe universal class of individuals. This is the root node of the ontology.
 inheritable relationThe class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate.
 irreflexive relationRelation ?REL is irreflexive iff (?REL ?INST ?INST) holds for no value of ?INST.
 predicateA Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'.
 relationThe Class of relations. There are three kinds of Relation: Predicate, Function, and List. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators. A List, on the other hand, is a particular ordered n-tuple.
Belongs to Class entity


Show full definition (without tree view)
Show full definition (with tree view)

Show without tree


Sigma web home      Suggested Upper Merged Ontology (SUMO) web home
Sigma version 2.99c (>= 2017/11/20) is open source software produced by Articulate Software and its partners