pathLength


Sigma KEE  pathLength
appearance as argument number 1


s__documentation(s__pathLength__m,s__ChineseLanguage,'这是一个 BinaryPredicate，它指定一个 GraphPath 的长度 (以GraphNode 以的数量)，(pathLength ?PATH ?NUMBER)的意思是在 GraphPath ?PATH 上有 ?NUMBER 的节点。')

Merge.kif 60266028 

s__documentation(s__pathLength__m,s__EnglishLanguage,'A BinaryPredicate that specifies the length (in number of GraphNodes) of a GraphPath. (pathLength ?PATH ?NUMBER) means that there are ?NUMBER nodes in the GraphPath ?PATH.')

Merge.kif 60226025 

s__domain(s__pathLength__m,1,s__GraphPath)

Merge.kif 60206020 
The number 1 argument of path length is an instance of graph path 
s__domain(s__pathLength__m,2,s__PositiveInteger)

Merge.kif 60216021 
The number 2 argument of path length is an instance of positive integer 
s__instance(s__pathLength__m,s__AsymmetricRelation)
s__instance(s__AsymmetricRelation,s__SetOrClass)

Merge.kif 60186018 
path length is an instance of asymmetric relation 
s__instance(s__BinaryPredicate,s__SetOrClass)
s__instance(s__pathLength__m,s__BinaryPredicate)

Merge.kif 60176017 
path length is an instance of binary predicate 
s__instance(s__pathLength__m,s__IrreflexiveRelation)
s__instance(s__IrreflexiveRelation,s__SetOrClass)

Merge.kif 60196019 
path length is an instance of irreflexive relation 
appearance as argument number 2


consequent


statement


( ∀ [V__NUMBER1,V__NUMBER2,V__GRAPH]
((s__instance(V__NUMBER1,s__PositiveInteger)s__and__ms__instance(V__NUMBER2,s__PositiveInteger)s__and__ms__instance(V__GRAPH,s__Graph))
s__=>(s__not__m(s__exists__m[V__PATH1,V__PATH2]
(s__instance(V__PATH1,s__GraphPath)s__and__ms__instance(V__PATH2,s__GraphPath)s__and__m(s__instance(V__PATH1,s__CutSetFn(V__GRAPH))
s__and__ms__instance(V__PATH2,s__MinimalCutSetFn(V__GRAPH))
s__and__ms__pathLength(V__PATH1,V__NUMBER1)
s__and__ms__pathLength(V__PATH2,V__NUMBER2)
s__and__ms__lessThan(V__NUMBER1,V__NUMBER2))))))
)

Merge.kif 62306237 
There don't exist a graph path and another graph path such that the graph path is an instance of the set of paths that partition a graph into two separate graphs and the other graph path is an instance of the set of minimal paths that partition the graph into two separate graphs and the length of the graph path is a positive integer and the length of the other graph path is another positive integer and the positive integer is less than the other positive integer 

Show simplified definition (without tree view)
Show simplified definition (with tree view)
