Simple Browser : Welcome guest : log in
Home |  Graph |  ]  KB:  Language:   

Formal Language: 




Sigma KEE - partiallyFills
KB Term: 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
partially fills
(partiallyFills ?OBJ ?HOLE) means that ?OBJ completelyFills some part of ?HOLE. Note that if (partiallyFills ?OBJ1 ?HOLE) and (part ?OBJ1 ?OBJ2), then (partiallyFills ?OBJ2 ?HOLE). Note too that a partial filler need not be wholly inside a hole (it may stick out), which means that every complete filler also qualifies as (is a limit case of) a partial one.
Relationships      
Parents located (located ?OBJ1 ?OBJ2) means that ?OBJ1 is partlyLocated at ?OBJ2, and there is no part of ?OBJ1 that is not located at ?OBJ2.
Children completely fills(completelyFills ?OBJ ?HOLE) means that some part of the Object ?OBJ fills the Hole ?HOLE. Note that if (completelyFills ?OBJ1 ?HOLE) and (part ?OBJ1 ?OBJ2), then (completelyFills ?OBJ2 ?HOLE). A complete filler of (a part of) a hole is connected with everything with which (that part of) the hole itself is connected. A perfect filler of (a part of) a hole completely fills every proper part of (that part of) that hole.
 properly fills(properlyFills ?OBJ ?HOLE)means that ?HOLE is properly (though perhaps incompletely) filled by ?OBJ, i.e. some part of ?HOLE is perfectly filled by ?OBJ. Note thatproperlyFills is the dual of completelyFills, and is so related to partiallyFills that ?OBJ properlyFills ?HOLE just in case ?OBJ partiallyFills every part of ?HOLE. (Thus, every perfect filler is both complete and proper in this sense). Every hole is connected with everything with which a proper filler of the hole is connected. Every proper part of a perfect filler of (a part of) a hole properly fills (that part of) that hole.
InstancesabstractProperties or qualities as distinguished from any particular embodiment of the properties/qualities in a physical medium. Instances of Abstract can be said to exist in the same sense as mathematical objects such as sets and relations, but they cannot exist at a particular place and time without some physical encoding or embodiment.
 antisymmetric relationBinaryRelation ?REL is an AntisymmetricRelation if for distinct ?INST1 and ?INST2, (?REL ?INST1 ?INST2) implies not (?REL ?INST2 ?INST1). In other words, for all ?INST1 and ?INST2, (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST1) imply that ?INST1 and ?INST2 are identical. Note that it is possible for an AntisymmetricRelation to be a ReflexiveRelation.
 asymmetric relationA BinaryRelation is asymmetric if and only if it is both an AntisymmetricRelation and an IrreflexiveRelation.
 binary predicateA Predicate relating two items - its valence is two.
 binary relationBinaryRelations are relations that are true only of pairs of things. BinaryRelations are represented as slots in frame systems.
 entityThe universal class of individuals. This is the root node of the ontology.
 inheritable relationThe class of Relations whose properties can be inherited downward in the class hierarchy via the subrelation Predicate.
 irreflexive relationRelation ?REL is irreflexive iff (?REL ?INST ?INST) holds for no value of ?INST.
 predicateA Predicate is a sentence-forming Relation. Each tuple in the Relation is a finite, ordered sequence of objects. The fact that a particular tuple is an element of a Predicate is denoted by '(*predicate* arg_1 arg_2 .. arg_n)', where the arg_i are the objects so related. In the case of BinaryPredicates, the fact can be read as `arg_1 is *predicate* arg_2' or `a *predicate* of arg_1 is arg_2'.
 relationThe Class of relations. There are three kinds of Relation: Predicate, Function, and List. Predicates and Functions both denote sets of ordered n-tuples. The difference between these two Classes is that Predicates cover formula-forming operators, while Functions cover term-forming operators. A List, on the other hand, is a particular ordered n-tuple.
 spatial relationThe Class of Relations that are spatial in a wide sense. This Class includes mereological relations and topological relations.
 total valued relationA Relation is a TotalValuedRelation just in case there exists an assignment for the last argument position of the Relation given any assignment of values to every argument position except the last one. Note that declaring a Relation to be both a TotalValuedRelation and a SingleValuedRelation means that it is a total function.
 transitive relationA BinaryRelation ?REL is transitive if (?REL ?INST1 ?INST2) and (?REL ?INST2 ?INST3) imply (?REL ?INST1 ?INST3), for all ?INST1, ?INST2, and ?INST3.
Belongs to Class entity


Show simplified definition with tree view
Show full definition (without tree view)
Show full definition (with tree view)


Sigma web home      Suggested Upper Merged Ontology (SUMO) web home
Sigma version 2.99c (>= 2017/11/20) is open source software produced by Articulate Software and its partners