Browsing Interface : Welcome guest : log in
Home |  Graph |  LogLearn |  ]  KB:  Language:    Formal Language: 


KB Term:  Term intersection
English Word: 

Sigma KEE - Integer
Integer(integer)0, 1, 10, 100, 1000, 101, 105, 11, 110, 115, 12, 120, 125, 13, 130, 135, 14, 140, 145, 15, 150, 155, 16, 160, 165, 17, 170, 175, 18, 180, 19, 190, 2, 20, 200, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 30, 300, 31, 32, 33...

appearance as argument number 1
-------------------------


(subclass Integer RationalNumber) Merge.kif 1989-1989 Integer is a subclass of rational number
(partition Integer OddInteger EvenInteger) Merge.kif 1990-1990 Integer is exhaustively partitioned into odd integer and even integer
(partition Integer NegativeInteger NonnegativeInteger) Merge.kif 1991-1991 Integer is exhaustively partitioned into negative integer and nonnegative integer
(documentation Integer EnglishLanguage "A negative or nonnegative whole number.") Merge.kif 1993-1993 Integer is exhaustively partitioned into negative integer and nonnegative integer

appearance as argument number 2
-------------------------


(range SupplyFn Integer) Economy.kif 6755-6755 The range of supply is an instance of integer
(range DemandFn Integer) Economy.kif 6784-6784 The range of demand is an instance of integer
(subclass EvenInteger Integer) Merge.kif 1995-1995 Even integer is a subclass of integer
(subclass OddInteger Integer) Merge.kif 2000-2000 Odd integer is a subclass of integer
(subclass PrimeNumber Integer) Merge.kif 2005-2005 Prime number is a subclass of integer
(subclass NonnegativeInteger Integer) Merge.kif 2010-2010 Nonnegative integer is a subclass of integer
(subclass NegativeInteger Integer) Merge.kif 2020-2020 Negative integer is a subclass of integer
(range CeilingFn Integer) Merge.kif 4836-4836 The range of ceiling is an instance of integer
(range DenominatorFn Integer) Merge.kif 4863-4863 The range of denominator is an instance of integer
(range FloorFn Integer) Merge.kif 4881-4881 The range of floor is an instance of integer
(range GreatestCommonDivisorFn Integer) Merge.kif 4899-4899 The range of greatest common divisor is an instance of integer
(range LeastCommonMultipleFn Integer) Merge.kif 4984-4984 The range of least common multiple is an instance of integer
(range NumeratorFn Integer) Merge.kif 5089-5089 The range of numerator is an instance of integer
(range RemainderFn Integer) Merge.kif 5150-5150 The range of remainder is an instance of integer
(range SignumFn Integer) Merge.kif 5242-5242 The range of signum is an instance of integer
(range SuccessorFn Integer) Merge.kif 5354-5354 The range of successor is an instance of integer
(range PredecessorFn Integer) Merge.kif 5387-5387 The range of predecessor is an instance of integer
(range CardinalityFn Integer) Merge.kif 5558-5558 The range of cardinality is an instance of integer
(range PopulationFn Integer) Mid-level-ontology.kif 34385-34385 The range of population is an instance of integer
(range OrganismPopulationFn Integer) Mid-level-ontology.kif 34422-34422 The range of population of organisms is an instance of integer
(range AvailableForMilitaryServiceMaleFn Integer) Military.kif 933-933 The range of available for military service male is an instance of integer
(range FitForMilitaryServiceMaleFn Integer) Military.kif 955-955 The range of fit for military service male is an instance of integer
(range ReachingMilitaryAgeAnnuallyMaleFn Integer) Military.kif 993-993 The range of reaching military age annually male is an instance of integer
(termFormat EnglishLanguage Integer "integer") english_format.kif 934-934 The range of reaching military age annually male is an instance of integer

appearance as argument number 3
-------------------------


(domain coilCount 2 Integer) Cars.kif 3190-3190 The number 2 argument of coil count is an instance of integer
(domain communicationSatelliteForArea 3 Integer) Communications.kif 135-135 The number 3 argument of communication satellite for area is an instance of integer
(domain splitFor 2 Integer) FinancialOntology.kif 2243-2243 The number 2 argument of split for is an instance of integer
(domain splitFor 3 Integer) FinancialOntology.kif 2244-2244 The number 3 argument of split for is an instance of integer
(domain seatsWonInElection 3 Integer) Government.kif 1867-1867 The number 3 argument of seats won in election is an instance of integer
(domain seatsInOrganizationCount 2 Integer) Government.kif 2030-2030 The number 2 argument of seats in organization count is an instance of integer
(domain maxRoomCapacity 2 Integer) Hotel.kif 477-477 The number 2 argument of maximum capacity is an instance of integer
(domain numberOfFloors 2 Integer) Hotel.kif 707-707 The number 2 argument of number of floors is an instance of integer
(domain capacityByArrangement 3 Integer) Hotel.kif 792-792 The number 3 argument of capacity by arrangement is an instance of integer
(domain roomStay 2 Integer) Hotel.kif 2749-2749 The number 2 argument of room stay is an instance of integer
(domain numberOccupant 2 Integer) Hotel.kif 2870-2870 The number 2 argument of number of occupants is an instance of integer
(domain numberAdultOccupant 2 Integer) Hotel.kif 2873-2873 The number 2 argument of number of adult occupants is an instance of integer
(domain numberChildOccupant 2 Integer) Hotel.kif 2912-2912 The number 2 argument of number of child occupants is an instance of integer
(domain numberSeniorOccupant 2 Integer) Hotel.kif 2934-2934 The number 2 argument of number of senior occupants is an instance of integer
(domain exactCardinality 2 Integer) Media.kif 2072-2072 The number 2 argument of exact cardinality is an instance of integer
(domain exactCardinality 3 Integer) Media.kif 2073-2073 The number 3 argument of exact cardinality is an instance of integer
(domain minCardinality 2 Integer) Media.kif 2159-2159 The number 2 argument of min cardinality is an instance of integer
(domain minCardinality 3 Integer) Media.kif 2160-2160 The number 3 argument of min cardinality is an instance of integer
(domain maxCardinality 2 Integer) Media.kif 2196-2196 The number 2 argument of max cardinality is an instance of integer
(domain maxCardinality 3 Integer) Media.kif 2197-2197 The number 3 argument of max cardinality is an instance of integer
(domain restingHeartRate 2 Integer) Medicine.kif 115-115 The number 2 argument of baseline heart rate is an instance of integer
(domain restingBreathingRate 2 Integer) Medicine.kif 324-324 The number 2 argument of resting breathing rate is an instance of integer
(domain visualAcuity 2 Integer) Medicine.kif 1686-1686 The number 2 argument of visual acuity is an instance of integer
(domain visualAcuity 3 Integer) Medicine.kif 1687-1687 The number 3 argument of visual acuity is an instance of integer
(domain SubListFn 1 Integer) Merge.kif 3198-3198 The number 1 argument of sub-list function is an instance of integer

Display limited to 25 items. Show next 25

Display limited to 25 items. Show next 25

antecedent
-------------------------


(=>
    (instance ?NUMBER Integer)
    (equal
        (ReciprocalFn ?NUMBER)
        (ExponentiationFn ?NUMBER -1)))
Merge.kif 5134-5136 If X is an instance of integer, then equal the reciprocal of X and X raised to the power -1
(=>
    (and
        (instance ?NUMBER Integer)
        (not
            (equal ?NUMBER 0)))
    (equal 1
        (MultiplicationFn ?NUMBER
            (ReciprocalFn ?NUMBER))))
Merge.kif 5138-5143 If X is an instance of integer and equal X and 0, then equal 1, X, and the reciprocal of X
(=>
    (instance ?INT Integer)
    (lessThan ?INT
        (SuccessorFn ?INT)))
Merge.kif 5363-5365 If X is an instance of integer, then X is less than (X+1)
(=>
    (instance ?INT Integer)
    (equal ?INT
        (SuccessorFn
            (PredecessorFn ?INT))))
Merge.kif 5376-5378 If X is an instance of integer, then equal X and ((X+2)+1)
(=>
    (instance ?INT Integer)
    (equal ?INT
        (PredecessorFn
            (SuccessorFn ?INT))))
Merge.kif 5380-5382 If X is an instance of integer, then equal X and ((X+1)+2)
(=>
    (instance ?INT Integer)
    (greaterThan ?INT
        (PredecessorFn ?INT)))
Merge.kif 5396-5398 If X is an instance of integer, then X is greater than (X+2)
(=>
    (and
        (shortage ?A ?O ?C ?T ?N)
        (instance ?N Integer))
    (desires ?A
        (exists (?G)
            (and
                (instance ?G Collection)
                (memberType ?G ?O)
                (memberCount ?G ?N)
                (possesses ?A ?G)))))
Mid-level-ontology.kif 33580-33590 If there is a shortage of X of Y for Z at W during V and X is an instance of integer, then Z desires there exists U such that U is an instance of collection, Y is a member type of U, X is a member count of U, and Z possesses U
(=>
    (and
        (shortage ?A ?O ?C ?T ?N)
        (instance ?N Integer))
    (not
        (exists (?B ?G)
            (and
                (instance ?B Buying)
                (during
                    (WhenFn ?B) ?T)
                (objectTransferred ?B ?G)
                (transactionAmount ?B ?C)
                (agent ?B ?A)
                (instance ?G Collection)
                (memberType ?G ?O)
                (memberCount ?G ?N)
                (possesses ?A ?G)))))
Mid-level-ontology.kif 33605-33620 If there is a shortage of X of Y for Z at W during V and X is an instance of integer, then All of the following hold: (1) there don't exist U (2) T such that U is an instance of buying (3) the time of existence of U takes place during V (4) the object transferred in U is T (5) W is a transaction amount of U (6) Z is an agent of U (7) T is an instance of collection (8) Y is a member type of T (9) X is a member count of T (10) Z possesses T
(=>
    (and
        (shortage ?A ?O ?C ?T ?N)
        (instance ?N Integer))
    (desires ?A
        (exists (?B ?G)
            (and
                (instance ?B Buying)
                (during
                    (WhenFn ?B) ?T)
                (objectTransferred ?B ?G)
                (transactionAmount ?B ?C)
                (agent ?B ?A)
                (instance ?G Collection)
                (memberType ?G ?O)
                (memberCount ?G ?N)
                (possesses ?A ?G)))))
Mid-level-ontology.kif 33638-33653 If there is a shortage of X of Y for Z at W during V and X is an instance of integer, then All of the following hold: (1) Z desires there exist U (2) T such that U is an instance of buying (3) the time of existence of U takes place during V (4) the object transferred in U is T (5) W is a transaction amount of U (6) Z is an agent of U (7) T is an instance of collection (8) Y is a member type of T (9) X is a member count of T (10) Z possesses T

consequent
-------------------------


(=>
    (and
        (instance ?MIT BarMitzvah)
        (patient ?MIT ?X)
        (instance ?X Boy)
        (member ?X ?GROUP)
        (instance ?GROUP Judaism)
        (birthdate ?X ?DAY)
        (instance ?DAY
            (DayFn ?D
                (MonthFn ?M
                    (YearFn ?Y)))))
    (exists (?Y13 ?BD13)
        (and
            (instance ?Y13 Integer)
            (equal ?Y13
                (AdditionFn ?Y 13))
            (instance ?BD13
                (DayFn ?D
                    (MonthFn ?M
                        (YearFn ?Y13))))
            (equal
                (WhenFn ?MIT)
                (ImmediateFutureFn ?BD13)))))
Biography.kif 71-87 If All of the following hold: (1) X is an instance of bar mitzvah (2) Y is a patient of X (3) Y is an instance of boy (4) Y is a member of Z (5) Z is an instance of judaism (6) W is a birthdate of Y (7) W is an instance of the day V of month the month U, then there exist T and S such that T is an instance of integer and equal T and (R and 13) and S is an instance of the day V of month the month U and equal the time of existence of X and immediately after S
(=>
    (and
        (instance ?MIT BatMitzvah)
        (patient ?MIT ?X)
        (instance ?X Girl)
        (member ?X ?GROUP)
        (instance ?GROUP Judaism)
        (birthdate ?X ?DAY)
        (instance ?DAY
            (DayFn ?D
                (MonthFn ?M
                    (YearFn ?Y)))))
    (exists (?Y13 ?BD13)
        (and
            (instance ?Y13 Integer)
            (equal ?Y13
                (AdditionFn ?Y 13))
            (instance ?BD13
                (DayFn ?D
                    (MonthFn ?M
                        (YearFn ?Y13))))
            (equal
                (WhenFn ?MIT)
                (ImmediateFutureFn ?BD13)))))
Biography.kif 102-118 If All of the following hold: (1) X is an instance of bat mitzvah (2) Y is a patient of X (3) Y is an instance of girl (4) Y is a member of Z (5) Z is an instance of judaism (6) W is a birthdate of Y (7) W is an instance of the day V of month the month U, then there exist T and S such that T is an instance of integer and equal T and (R and 13) and S is an instance of the day V of month the month U and equal the time of existence of X and immediately after S
(=>
    (and
        (instance ?SEQ SequenceFunction)
        (range ?SEQ ?CLASS))
    (subclass ?CLASS Integer))
Merge.kif 3431-3435 If X is an instance of sequence function and the range of X is an instance of Y, then Y is a subclass of integer
(=>
    (multiplicativeFactor ?N1 ?N2)
    (exists (?I)
        (and
            (instance ?I Integer)
            (equal ?N2
                (MultiplicationFn ?N1 ?I)))))
Merge.kif 4951-4956 If X is a multiplicative factor of Y, then there exists Z such that Z is an instance of integer, equal X, Y, and Z
(=>
    (and
        (instance ?WED Wedding)
        (date ?WED ?DAY)
        (instance ?DAY
            (DayFn ?D
                (MonthFn ?M
                    (YearFn ?Y)))))
    (exists (?CLASS ?FUTURE)
        (and
            (weddingAnniversary ?WED ?CLASS)
            (subclass ?CLASS Day)
            (instance ?FUTURE Integer)
            (equal ?CLASS
                (DayFn ?D
                    (MonthFn ?M
                        (YearFn ?FUTURE))))
            (greaterThan ?FUTURE ?Y))))
Mid-level-ontology.kif 26561-26572 If X is an instance of wedding, date of X is Y, and Y is an instance of the day Z of month the month W, then All of the following hold: (1) there exist V (2) U such that wedding anniversary X (3) V (4) V is a subclass of day (5) U is an instance of integer (6) equal V (7) the day Z of month the month W (8) U is greater than T
(=>
    (and
        (birthdate ?A ?DAY)
        (instance ?DAY
            (DayFn ?D
                (MonthFn ?M
                    (YearFn ?Y)))))
    (exists (?CLASS ?FUTURE)
        (and
            (birthday ?A ?CLASS)
            (subclass ?CLASS Day)
            (instance ?FUTURE Integer)
            (equal ?CLASS
                (DayFn ?D
                    (MonthFn ?M
                        (YearFn ?FUTURE))))
            (greaterThan ?FUTURE ?Y))))
Mid-level-ontology.kif 26602-26612 If X is a birthdate of Y and X is an instance of the day Z of month the month W, then All of the following hold: (1) there exist V (2) U such that Y's birthday is V (3) V is a subclass of day (4) U is an instance of integer (5) equal V (6) the day Z of month the month W (7) U is greater than T


Show full definition with tree view
Show simplified definition (without tree view)
Show simplified definition (with tree view)



Sigma web home      Suggested Upper Merged Ontology (SUMO) web home
Sigma version 3.0 is open source software produced by Articulate Software and its partners